Series expansion analysis of directed site-bond percolation on the square and simple cubic lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 18355
(http://iopscience.iop.org/0305-4470/18/2/025)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:20

Please note that terms and conditions apply.

Series expansion analysis of directed site-bond percolation on the square and simple cubic lattices

K De’Bell \dagger and J W Essam \ddagger
† Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5 \ddagger Mathematics Department, Westfield College, University of London, Hampstead NW3 7ST, England

Received 10 August 1984

> Abstract. Analysis of low-density series for site-bond percolation on the directed square (SQ) and simple cubic (SC) lattice (and related series for bond percolation on the honeycomb (H) and diamond (Di) lattices) is found to be consistent with
> $p_{c}(\mathrm{SQ}$, site-bond $)=p_{\mathrm{c}}(\mathrm{H}$, bond $)=0.8228 \pm 0.0002$
> $p_{\mathrm{c}}(\mathrm{SC}$, site-bond $)=p_{c}(\mathrm{Di}$, bond $)=0.637 \pm 0.002$
> and previous estimates of γ, ν_{l} and ν_{-}. Analysis of the square lattice series supports the validity of the scaling relation $\gamma_{0}=\gamma-(d-1) \nu_{-}$ for the two-dimensional lattices.
> Site percolation on the honeycomb and diamond lattices is also considered.

1. Introduction

The statistical properties of the directed percolation problem, in which bonds (and/or sites) of a lattice are occupied with probability p and fluid flow is restricted so that it always has a positive component along some chosen axis (the preferred direction), may be determined from a knowledge of the pair-connectedness $C_{i}(p)$, the probability that site i is connected to the origin. The moments of the pair-connectedness are given by

$$
\begin{equation*}
\mu_{l, m}(p)=\sum_{i} x_{i}^{l} t_{i}^{m} C_{i}(p), \tag{1}
\end{equation*}
$$

where x_{i} and t_{i} are the components of the position vector of site i perpendicular to and parallel to the preferred direction of fluid flow respectively. The moment $\mu_{00}(p)$ is the mean size $S(p)$ of the cluster connected to the origin. For p sufficiently close to its critical value p_{c} the moments are assumed to have the asymptotic form

$$
\begin{equation*}
\mu_{l, m}(p) \sim\left|p_{c}-p\right|^{-\gamma-\nu_{-}-m \nu_{l}} \tag{2}
\end{equation*}
$$

(Cardy and Sugar 1980, Kinzel and Yeomans 1981). Moreover the scaling form for the pair-connectedness proposed by Cardy and Sugar (1980) leads to the scaling prediction

$$
\begin{equation*}
\gamma_{0}=\gamma-(d-1) \nu_{\perp} \tag{3}
\end{equation*}
$$

where γ_{0} is the critical exponent of the diagonal mean size

$$
\begin{equation*}
S_{0}(p)=\sum_{i: x_{i}=0} C_{i}(p) \tag{4}
\end{equation*}
$$

and d is the lattice dimension.
In this paper we extend our previous work on two- and three-dimensional directed percolation (De'Bell and Essam 1983a, b, hereafter referred to as I and II) to site-bond percolation on the directed square and simple cubic lattices (§ 2). Previous series expansion work on site-bond percolation has been for undirected lattices (Agrawal et al 1979, Brown et al 1975). In site-bond percolation both sites and bonds are independently present with probability p, which means that the same configurational data gives rise to series which are twice as long as those for the corresponding site and bond problems. We have used these series to test relation (3) by comparing estimates of ν_{\perp} and ν_{0}, defined by

$$
\begin{equation*}
\nu_{0}=\left(\gamma-\gamma_{0}\right) /(d-1) \tag{5}
\end{equation*}
$$

which should be equal if (3) is true. The results of previous tests (given in I and II) showed significant differences between ν_{0} and ν_{\perp} which were relatively small in two dimensions but quite pronounced in three dimensions. The latter was attributed to the special nature of the $S_{0}(p)$ series which has a length which is effectively much shorter than that of the other moments. This effect is much worse in three dimensions where the number of available coefficients is in any case rather small. We shall find that the data for directed site-bond percolation strongly supports equation (3) in two dimensions but that the discrepancy remains in three dimensions.

In § 3 we consider series expansions for directed bond and site percolation on the honeycomb and diamond lattices. The bond percolation series may be derived from the site-bond series above whereas the site problem series are determined by previously published (I and II) site problem series for the square and simple cubic lattices (Essam and De'Bell 1982).

Our results are summarised in table 1 and are based on Padé approximant analysis of the series expansions tabulated in the appendix. The coefficients in these expansions were obtained by the methods described in I.

Table 1. Summary of critical probabilities and exponents for site-bond percolation. The coefficients of Δp_{c} are obtained from the tangent to the pole-residue curve at the estimated value p_{c} and measure the sensitivity of the exponent values to changes in this estimate.

	Square lattice	Simple cubic lattice	
p_{c}	$0.82281+0.01 \Delta y \pm 0.00002$	0.637 ± 0.002	
γ	2.269 (assumed)	$1.575+44 \Delta p_{c} \pm 0.003$	
$\nu_{\\|}$	$1.731+70 \Delta p_{c} \pm 0.004$	$1.260+19 \Delta p_{c} \pm 0.003$	
ν_{\perp}	$1.100+51 \Delta p_{c} \pm 0.005$	$0.728+14 \Delta p_{c} \pm 0.002$	
ν_{0}	$1.097+36 \Delta p_{c} \pm 0.001$	$0.638+12 \Delta p_{c} \pm 0.004$	

2. Analysis of directed site-bond percolation series

As usual (Gaunt and Guttman 1974) we form a selection of Padé approximants to the logarithmic derivative (Dlog) of various series in order to estimate p_{c} and the exponents $\gamma, \nu_{\|}, \nu_{\perp}$ and ν_{0}.

The pole-residue data for the square lattice Dlog $S(p)$ series is given in table 2. Our estimate of p_{c} (table 1) derived from this data is biased slightly upwards to give $\gamma=2.269$ and is in agreement with that obtained by Kinzel and Yeomans (1981) using finite size scaling techniques. This value of γ was obtained from the square lattice bond problem series which showed the best convergence of the series examined in I. The term $0.01 \Delta \gamma$ (table 1) shows the sensitivity of p_{c} to changes in the assumed value of γ and the error in the value of p_{c} quoted in the abstract is obtained by taking $|\Delta \gamma| \leqslant 0.02$ as in I. Similar pole-residue data from $\mu_{2,0} / S\left(\sim\left(p_{c}-p\right)^{-2 \nu_{1}}\right)$ and S / S_{0} $\left(\sim\left(p_{\mathrm{c}}-p\right)^{\gamma_{0}-\gamma}\right)$ which has been scaled to give estimates of ν_{\perp} and ν_{0} respectively are shown in figure 1. The points lie on two distinct curves which cross in the vicinity of the estimated p_{c} in excellent agreement with the scaling prediction $\nu_{0}=\nu_{\perp}$ which is equivalent to (3) by definition of ν_{0}. This relation has also recently been confirmed by Monte Carlo data for directed site percolation on the square lattice (De'Bell et al 1984).

Table 2. Poles and residues of the Dlog Padé approximants from the mean size series for site-bond percolation on the square lattice.

$(N / N-2)$		$(N / N-1)$		(N / N)		$(N / N+1)$		$(N / N+2)$		
N	p_{c}	γ								
21	-	-	0.8225	2.241	0.8225	2.239	0.8228	2.272	0.8228	2.263
22	0.8225	2.242	0.8224	2.234	0.8228	2.263	0.8229^{D}	2.275	0.8227	2.255
23	0.8213^{D}	2.248	0.8226	2.246	0.8227	2.254	0.8227	2.262	-	-
24	0.8228	2.267	0.8223^{D}	2.228						

[^0]

Figure 1. Estimates of ν_{0} and ν_{-}for site-bond percolation on the square lattice: pole-residue plot for $\operatorname{Dlog}\left(S / S_{0}\right) ;(+)$ the four points which are closest to p_{c} from the pole-residue plot for $\frac{1}{2}\left[\operatorname{Dog}\left(\mu_{2,0} / S\right)\right]$.

In the analysis of three-dimensional bond and site percolation presented in II no particular series was chosen as giving the best estimate of γ and the value of p_{c} for site-bond percolation on the simple cubic lattice given in table 1 is unbiased. The result quoted is based on the data in table 3 which includes pole-residue pairs from

Table 3. Poles and residues of the Dlog Padé approximants for site-bond percolation on the simple cubic lattice.
(a) Mean size S.

N	($N / N-2$)		$(N / N-1)$		(N/N)		$(N / N+1)$		($N / N+2$)	
	$p_{\text {c }}$	γ								
9	-	-	$0.6398^{\text {D }}$	1.669	0.6383	1.618	$0.6364^{\text {D }}$	1.542	0.6208	0.777
10	$0.6399^{\text {D }}$	1.670	$0.6416^{\text {D }}$	1.711	0.6096	3.894	0.6339	1.437	0.6383	1.624
11	0.6379	1.613	0.6392	1.653	0.6375	1.594	0.6369	1.570	-	-
12	0.6385	1.630	0.6363	1.538						

(b) $\mu_{0,2} / S$.

N	(N/N-2)		$(N / N-1)$		(N / N)		(N/N+1)		($N / N+2)$			
	$p_{\text {c }}$	$2 v_{1}$	$p_{\text {c }}$	$2 \nu_{1}$	$p_{\text {c }}$	$2 \nu_{\\|}$	$p_{\text {c }}$	$2 \nu_{\\|}$	$p_{\text {c }}$	$2 \nu_{1}$		
7	-	-	-	-	0.6375	2.539	0.6373	2.532	0.6376	2.545		
8	-	-	0.6380	2.555	0.6377	2.544	0.6374	2.536	0.6372	2.529		
9	0.6367	2.507	0.6382	2.562	0.6372	2.529	$0.6377^{\text {D }}$	2.544	$0.6420^{\text {D }}$	2.54		
10	$0.6423{ }^{\text {D }}$	2.676	0.6364	2.502	$0.6413^{\text {D }}$	2.55	0.6367	2.519	-	-		
11	0.6353	2.458	0.6342	2.405								

${ }^{D}$ Interfering defect.
both the mean size series and the series for $\mu_{0,2} / S$. There appear to be no earlier estimates of the critical probability for this problem. The estimates of ν_{\perp} and ν_{0} (table 1) are in good agreement with those reported in II and the apparent inconsistency with (3) is discussed therein. It can be seen that the error in the three-dimensional exponent estimates is dominated by the relatively large uncertainty in p_{c} which is ten times greater than in two dimensions.

3. The honeycomb and diamond lattices

It has been shown (Essam and De'Bell 1982) that the moments for site-bond percolation on the directed square and cubic lattice determine the moments $\hat{\mu}_{i, m}$ for bond percolation on the directed honeycomb and diamond lattices using the relation
$\hat{\mu}_{l, m}(p)=\sum_{i}\left[d(d+1) x_{i}^{2}\right]^{1 / 2} d^{m / 2} C_{i}(p)\left\{\left[(d+1) t_{i}\right]^{m}+p\left[(d+1) t_{i}+d^{1 / 2}\right]^{m}\right\}$
with $d=2$ and 3. The result also holds for a general directed 'hyperdiamond' lattice defined as follows. Consider a d-dimensional cubic lattice and contract it uniformly in the $d-1$ dimensions perpendicular to the $(1,1, \ldots)$ axis until each site, together with its d nearest neighbours with non-negative coordinates, forms a hypertetrahedron. If an extra site is placed at the centre of each hypertetrahedron so formed, the resulting structure is one in which each site has $d+1$ nearest neighbours. Finally the nearestneighbour bonds are all directed in the positive sense relative to the $(1,1, \ldots)$ axis. The moments $\hat{\mu}_{l, m}$ on the left of (6) are calculated relative to an origin on the original cubic lattice. The pair-connectedness $C_{l}(p)$ in (6) is for site-bond percolation on the hypercubic lattice and the sum is over sites on this lattice.

In the case $m=0$, equation (6) leads to the simple relation

$$
\begin{equation*}
\hat{\mu}_{l, 0}(p)=[d(d+1)]^{1 / 2}(1+p) \mu_{l, 0}(p) \tag{7}
\end{equation*}
$$

which establishes equality of the critical probabilities for bond percolation on the hyperdiamond and site-bond percolation on the hypercubic lattices. The value of p_{c} for bond percolation on the directed honeycomb lattice which may consequently be read from table 1 represents a slight upward revision of the value $p_{c}=0.8226 \pm 0.0002$ obtained by Blease (1977) using the first forty-three terms of the mean size series. The increase results from the previously mentioned imposition of the value $\gamma=2.269$. Since ν_{\perp} and ν_{0} are normally determined from moment ratios the Padé tables corresponding to these exponents for bond percolation on the hyperdiamond lattices would (using (7)) be identical to those of the corresponding hypercubic problems.

The expression for the second moment $\hat{\mu}_{0,2}$ which is normally used to determine $\nu_{\|}$involves three of the cubic moments,

$$
\begin{equation*}
\hat{\mu}_{0,2}(p)=d(d+1)^{2}(1+p) \mu_{0,2}(p)+d p\left[2(d+1) d^{1 / 2} \mu_{0,1}(p)+d \mu_{0,0}(p)\right] \tag{8}
\end{equation*}
$$

and the resulting series for the honeycomb and diamond lattices are given in the appendix. The moments $\mu_{0,0}$ and $\mu_{0,1}$ are less strongly divergent at p_{c} than $\mu_{0,2}$ but nevertheless a Padé analysis of $\hat{\mu}_{0,2} / \hat{\mu}_{0,0}$ rather than $\mu_{0,2} / \mu_{0,0}$ gives a different set of data from which to estimate $\nu_{\|}$. It is found that the pole-residue pairs for the honeycomb and diamond bond problems lie on the same curves as for the corresponding site-bond problems so that the $\nu_{\|}$estimates in table 1 also apply to these problems.

Equation (6) also determines the moments for site percolation on the hyperdiamond lattice (Essam and De'Bell 1982) but now $C_{i}(p)=C_{1}^{*}\left(p^{2}\right)$ where $C_{i}^{*}(p)$ is the pairconnectedness for site percolation on the hypercubic lattice. The required site percolation moment series on the square and simple cubic lattices are given in I and II respectively with the exception of the first moment series which are given in the appendix. The resulting series for $\mu_{0,2}(p)$ on the honeycomb and diamond lattices are also listed in the appendix. Conversion of our previous p_{c} results for site percolation on the square and simple cubic lattices gives

$$
\begin{aligned}
p_{\mathrm{c}}(\mathrm{H}, \text { site }) & =p_{\mathrm{c}}^{1 / 2}(\mathrm{sQ}, \text { site }) \\
& =0.8399 \bullet 0.0001
\end{aligned}
$$

and

$$
\begin{aligned}
p_{\mathrm{c}}(\mathrm{Di}, \text { site }) & =p_{\mathrm{c}}^{1 / 2}(\mathrm{sC}, \text { site }) \\
& =0.659 \pm 0.003 .
\end{aligned}
$$

Again (7) implies that the estimates of ν_{\perp} and ν_{0} based on $\mu_{2,0} / S$ and S / S_{0} will be the same as those for the square and simple cubic site problems given in I and II. Analysis of the $\mu_{0,2}(p)$ series gives estimates of $\nu_{\|}$similar to those in I and II.

4. Concluding remarks

It is generally believed that site and bond percolation are in the same universality class and that site-bond percolation will also belong to this class. This has been demonstrated
for undirected percolation by series (Agrawal et al) and position-space renormalisation group (Nakanishi and Reynolds 1979) methods. Our results for directed percolation are clearly consistent with this universality. It was hoped that the exponents for the above class would be more accurately determined by the much longer series for site-bond percolation. This turned out not to be the case although the evidence for the validity of the scaling relation (3) in two dimensions was much stronger than that found in I. The inconsistency in three dimensions remains but we still believe this to be due to the special nature of the S_{0} series referred to in II.

Appendix. Coefficients of $\boldsymbol{p}^{\boldsymbol{n}}$ in the low-density series

Table A1. The site-bond problem on the directed square lattice.

n	S	S_{0}	$\sqrt{2} \mu_{0,1}$	${ }^{\frac{1}{2}} \mu_{2,0}$	$\mu_{0,2}$
0	1	1	0	0	0
1	0	0	0	0	0
2	2	0	2	1	1
3	0	0	0	0	0
4	4	2	8	4	8
5	0	0	0	0	0
6	8	0	24	12	36
7	-1	-1	-2	0	-2
8	16	6	64	32	128
9	-4	0	-12	-2	-18
10	32	0	160	80	400
11	-14	-6	-54	-13	-105
12	66	20	390	193	1161
13	-40	-4	-192	-56	-464
14	137	5	932	456	3208
15	-109	-33	-620	-200	-1780
16	294	74	2230	1071	8631
17	-280	-26	-1844	-638	-6138
18	640	40	5332	2506	22802
19	-706	-168	-5 250	-1893	-19793
20	1429	301	12864	5902	59798
21	-1737	-175	-14382	-5356	-60502
22	3234	286	31208	13974	156078
23	-4246	-852	-38544	-14626	-178318
24	7448	1356	76408	33408	407376
25	-10286	-1074	-101342	-38997	-510249
26	17334	1808	188192	80492	1063380
27	-24872	-4370	-263410	-102103	-1429587
28	40755	6475	466420	195606	2779686
29	-59 964	-6458	-677906	-263 986	-3936828
30	96531	10989	1160942	478491	7271631
31	-144713	-22793	-1734724	-676142	-10706946
32	230116	33040	2900508	1177576	19037632
33	-349177	-38399	-4416598	-1720494	-28820 056
34	551227	64909	7264796	2911098	49846302

Table A1. (continued)

n	S	S_{0}	$\sqrt{2} \mu_{0,1}$	$\frac{1}{2} \mu_{2,0}$	$\mu_{0,2}$
35	-844026	-121918	-11213290	-4357317	-76989877
36	1325875	175585	18232196	7223650	130492310
37	-2042320	-227558	-28398442	-10999602	-204370932
38	3200362	380442	45821496	17974782	341420726
39	-4952069	-665233	-71832388	-27706907	-539954737
40	7747369	968457	115278538	44826469	892602561
41	-12025029	-1345581	-181485294	-69687927	-1420862891
42	18803789	2216501	290247646	111975445	2331392965
43	-29257829	-3709379	-458312338	-175126984	-3727544850
44	45741700	5463010	731205898	280085839	6083098175
45	-71299218	-7951882	-1156868020	-439867603	-9753207325
46	111502853	12944433	1842981826	701306807	15855341443
47	-174061514	-21027246	-2919904730	-1104601543	-25466801915
48	272304224	31426920	4646879872	1757501424	41282335480

Table A2. The site-bond problem on the directed simple cubic lattice.

n	S	S_{0}	$\sqrt{3} \mu_{0,1}$	$\frac{1}{2} \mu_{2,0}$	$\mu_{0,2}$
0	1	1	0	0	0
1	0	0	0	0	0
2	3	0	3	1	1
3	0	0	0	0	0
4	9	0	18	6	12
5	0	0	0	0	0
6	27	6	81	27	81
7	-3	0	-6	-1	-4
8	81	0	324	108	432
9	-18	-6	-54	-12	-54
10	243	0	1215	405	2025
11	-96	-9	-369	-87	-477
12	741	96	4410	1464	8784
13	-414	0	-1980	-498	-3180
14	2280	12	15669	5169	36189
15	-1716	-186	-9693	-2508	-18453
16	7160	2	55287	18055	144373
17	-6627	-297	-43401	-11548	-95857
18	22827	1992	194415	62705	563477
19	-25219	-478	-186312	-50265	-465816
20	74220	1098	686070	218006	2172044
21	-93111	-6378	-766329	-209396	-2139209
22	245019	2817	2430999	760135	8307193
23	-341853	-12366	-3083418	-847429	-9466198
24	822708	52965	8677386	2667024	31678578

Table A3. Low-density expansions for additional longitudinal moments.

n	$\mu_{0,1}^{*}\left(p^{2}\right)$		$\hat{\mu}_{0,2}(p)$			
	Square	Cubic	Honeycomb		Diamond	
	site	site	Bond	Site	Bond	Site
1	2	3	4	4	9	9
2	8	18	18	18	48	48
3	22	75	50	50	147	147
4	52	270	144	144	576	576
5	112	882	256	256	1089	1089
6	228	2736	648	612	3888	3696
7	442	8085	932	904	5883	5712
8	832	23334	2240	1980	20373	18144
9	1516	65184	2812	2652	26649	25191
10	2720	180186	6716	5472	93150	76032
11	4754	485202	7358	6896	105651	98631
12	8264		18304	13680	389016	288864
13	14000		17490	16548	381501	358146
14	23824		46928	31734	1533186	1019088
15	39318		37436	37250	1247904	1222020
16	66052		115442	69804	5796084	3419808
17	106282		72810	80128	3720096	4001910
18	177884		276704	146718	21344493	10976832
19	277936		120706	165442	9559131	12594546
20	469384		654266	298548	77200485	34210560
21	703924		147412	332028	18709740	38666028
22	1225052		1540836	588402	276833337	103373568
23			-12888	646738	4916907	115330185
24			3643532	1136016	989115531	
25			-905 026	1237204		
26			8699110	2138400		
27			-4264086	2309436		
28			21041374	3975984		
29			-15068496	4266640		
30			51651726	7225380		
31			-47518242	7704188		
32			128556808	13067388		
33			-140357072	13871140		
34			324076544	23070204		
35			-399201890	24361312		
36			825108210	40898736		
37			-1105725344	43059248		
38			2117945708	70362702		
39			-3010952798	73732250		
40			5465863900	123163056		
41			-8094354008	128856528		
42			14163617688	206444502		
43			-21572547022	214962978		
44			36783180478	359875872		
45			-57104527124	374723540		
46			95670801012			
47			-150444495172			
48			248944501354			

References

Agrawal P, Redner S, Reynolds P J and Stanley H E 1979 J. Phys. A: Math. Gen. 12 2073-85
Blease J 1977 J. Phys. C: Solid State Phys. 10 3461-76.
Brown E, Essam J W and Place C M 1975 J. Phys. C: Solid State Phys. 8 321-35
Cardy J L and Sugar R L 1980 J. Phys. A: Math. Gen. 13 L423-7
De’Bell K and Essam J W 1983a J. Phys. A: Math. Gen. 16 385-403

- 1983b J. Phys. A: Math. Gen. 16 3553-60

De'Bell K, Lookman T and Hunter D L 1984 Phys. Lett. 101A 221-3
Essam J W and De'Bell K 1982 J. Phys. A: Math. Gen. 15 L601-604
Gaunt D S and Guttman A J 1974 Phase Transitions and Critical Phenomena ed C Domb and M S Green, vol 3, 202-19
Kinzel W and Yeomans J M 1981 J. Phys. A: Math. Gen. 14 L163-8
Nakanishi H and Reynolds P J 1979 Phys. Lett. 71A 252-4

[^0]: ${ }^{\mathrm{D}}$ These approximants have an interfering defect and should be ignored when estimating p_{c} or γ.

