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Abstract. Analysis of low-density series for site-bond percolation on the directed square 
( S Q )  and simple cubic (sci lattice (and related series for bond percolation on the honeycomb 
( H )  and diamond ( m i  lattices) is found to be consistent with 

~ , ( s Q ,  site-bond) = p,( H ,  bond) = 0.8228 i 0.0002 

p,(sc, site-bond) = ~ , ( D I ,  bond) = 0.637 * 0.002 

and previous estimates of y, U ,  and U-. Analysis of the square lattice series supports the 
validity of the scaling relation 

yo = y - ( d  - 1 

for the two-dimensional lattices. 
Site percolation on the honeycomb and diamond lattices is also considered. 

1. Introduction 

The statistical properties of the directed percolation problem, in which bonds (and/or 
sites) of a lattice are occupied with probability p and fluid flow is restricted so that it 
always has a positive component along some chosen axis (the preferred direction), 
may be determined from a knowledge of the pair-connectedness Ci( p ) ,  the probability 
that site i is connected to the origin. The moments of the pair-connectedness are given 
by 

where x, and t ,  are the components of the position vector of site i perpendicular to 
and parallel to the preferred direction of fluid flow respectively. The moment F,,~( p )  
is the mean size S ( p )  of the cluster connected to the origin. For p sufficiently close 
to its critical value p c  the moments are assumed to have the asymptotic form 

F/ ,m( p )  - lpc - PI - y - / u - - m u l  ( 2 )  

(Cardy and Sugar 1980, Kinzel and Yeomans 1981). Moreover the scaling form for 
the pair-connectedness proposed by Cardy and Sugar (1980) leads to the scaling 
prediction 

yo= y - ( d -  I ) v ,  (3) 
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356 K De’Bell and J W Essam 

where yo is the critical exponent of the diagonal mean size 

So(P)=  c C ( P )  
I x ,=o  

(4) 

and d is the lattice dimension. 
In this paper we extend our previous work on two- and three-dimensional directed 

percolation (De’Bell and Essam 1983a, b, hereafter referred to as I and 11) to site-bond 
percolation on the directed square and simple cubic lattices ( §  2). Previous series 
expansion work on site-bond percolation has been for undirected lattices (Agrawal et 
a1 1979, Brown et a1 1975). In site-bond percolation both sites and bonds are 
independently present with probability p ,  which means that the same configurational 
data gives rise to series which are twice as long as those for the corresponding site 
and bond problems. We have used these series to test relation (3) by comparing 
estimates of v, and vo, defined by 

which should be equal if (3) is true. The results of previous tests (given in I and 11) 
showed significant differences between v0 and Y, which were relatively small in two 
dimensions but quite pronounced in three dimensions. The latter was attributed to 
the special nature of the S o ( p )  series which has a length which is effectively much 
shorter than that of the other moments. This effect is much worse in three dimensions 
where the number of available coefficients is in any case rather small. We shall find 
that the data for directed site-bond percolation strongly supports equation (3) in two 
dimensions but that the discrepancy remains in three dimensions. 

In § 3 we consider series expansions for directed bond and site percolation on the 
honeycomb and diamond lattices. The bond percolation series may be derived from 
the site-bond series above whereas the site problem series are determined by previously 
published ( I  and 11) site problem series for the square and simple cubic lattices (Essam 
and De’Bell 1982). 

Our results are summarised in table 1 and are based on Pad6 approximant analysis 
of the series expansions tabulated in the appendix. The coefficients in these expansions 
were obtained by the methods described in I. 

Table 1. Summary of critical probabilities and exponents for site-bond percolation. The 
coefficients of hp, are obtained from the tangent to the pole-residue curve at the estimated 
value p c  and measure the sensitivity of the exponent values to changes in this estimate. 

Square lattice Simple cubic lattice 

p c  0.82281 +O.Olhyr0.00002 0.637 * 0.002 
y 2.269 (assumed) 1 .575 +44Ap, * 0.003 
U,, 1.260 + 19Ap, * 0.003 
U, 0.728 + 14hp, * 0.002 
U,, 0.638 + 12hp, * 0.004 

I .73 I + 70Ap,* 0.004 
I .  100 + 51 hp, i 0.005 
1.097 + 366p, * 0.001 

2. Analysis of directed site-bond percolation series 

As usual (Gaunt and Guttman 1974) we form a selection of Pad6 approximants to the 
logarithmic derivative (Dlog) of various series in order to estimate p c  and the exponents 
Y, ~ I I ,  vi and vo. 
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The pole-residue data for the square lattice Dlog S ( p )  series is given in table 2. 
Our estimate of p c  (table 1) derived from this data is biased slightly upwards to give 
y = 2.269 and  is in agreement with that obtained by Kinzel and Yeomans (1981) using 
finite size scaling techniques. This value of y was obtained from the square lattice 
bond problem series which showed the best convergence of the series examined in I. 
The term 0.OlAy (table 1 )  shows the sensitivity of p c  to changes in the assumed value 
of y and the error in the value of pc quoted in the abstract is obtained by taking 
IAy(s0 .02  as in I. Similar pole-residue data from ( - ( p c - - p ) - * ” ~ )  and S / S o  
(-( p c  - p )  which has been scaled to give estimates of vl and vo respectively are 
shown in figure 1. The points lie on two distinct curves which cross in the vicinity of 
the estimated p c  in excellent agreement with the scaling prediction vo= v, which is 
equivalent to (3) by definition of vo. This relation has also recently been confirmed 
by Monte Carlo data for directed site percolation on the square lattice (De’Bell er a1 
1984). 

Table 2. Poles and residues of the Dlog Pade approximants from the mean size series for 
site-bond percolation on the square lattice. 

( N I N - 2 )  ( N I N - 1 )  i N /  N )  ( N I N + I )  ( N I  N + 2 )  
N P c  Y P C  Y P C  Y P C  Y P, Y 

21 - - 0.8225 2.241 0.8225 2.239 0.8228 2.272 0 8228 2.263 
22 0.8225 2.242 0.8224 2.234 0.8228 2.263 0.8229D 2.275 0.8227 2 255 
23 0.8213O 2.248 0.8226 2.246 0.8227 2.254 0.8227 2.262 - - 

24 0.8228 2.267 0.8223D 2.228 

These approximants have an interfering defect and should be ignored when estimating p ,  or y. 

[22/221-t  

1221241 

1231221 
[ 2 4 1 2 3 1  

1231231 1 0 9  

[ 2 4 / 2 2 1  

vo 

I I I 
0 822 0.8224 0.8228 0 8232 

P ;  

Figurel. Estimates of uo and U- for site-bond percolation on the square lattice: (0)  
pole-residue plot for Dlog(S/S,); ( + )  the four points which are closest to p c  from the 
pole-residue plot for f[Dlog(g*,,,/ S)]. 

In the analysis of three-dimensional bond and site percolation presented in I1 no  
particular series was chosen as giving the best estimate of y and the value of p c  for 
site-bond percolation on the simple cubic lattice given in table 1 is unbiased. The 
result quoted is based on the data in table 3 which includes pole-residue pairs from 
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Table 3. Poles and residues of the Dlog Pad6 approximants for site-bond percolation on 
the simple cubic lattice. 

( a )  Mean size S. 

9 -  - 0.6398D 1.669 0.6383 1.618 0.6364D 1.542 0.6208 0.777 
I O  0.6399D 1.670 0.641tD 1.71 I 0.6096 3.894 0.6339 1.437 0.6383 1.624 
I 1  0.6379 1.613 0.6392 1.653 0.6375 1.594 0.6369 1.570 - - 
12 0.6385 1.630 0.6363 1.538 

~ _____ ~~ 

7 -  - - - 0.6375 2.539 0.6373 2.532 0.6376 2.545 
8 -  - 0.6380 2.555 0.6377 2.544 0.6374 2.536 0.6372 2.529 
9 0.6367 2.507 0.6382 2.562 0.6372 2.529 0.6377D 2.544 0.6420D 2.54 

I O  0.6423D 2.676 0.6364 2.502 0.6413D 2.55 0.6367 2.519 - -. 
I 1  0.6353 2.458 0.6342 2.405 

~ 

Interfering defect. 

both the mean size series and the series for P ~ , ~ / S .  There appear to be no earlier 
estimates of the critical probability for this problem. The estimates of vl and v,, (table 
1) are in good agreement with those reported in I1 and the apparent inconsistency 
with (3) is discussed therein. It can be seen that the error in the three-dimensional 
exponent estimates is dominated by the relatively large uncertainty in p c  which is ten 
times greater than in two dimensions. 

3. The honeycomb and diamond lattices 

It has been shown (Essam and De'Bell 1982) that the moments for site-bond percolation 
on the directed square and cubic lattice determine the moments k,,m for bond percola- 
tion on the directed honeycomb and diamond lattices using the relation 

with d = 2 and 3. The result also holds for a general directed 'hyperdiamond' lattice 
defined as follows. Consider a d-dimensional cubic lattice and contract it uniformly 
in the d - 1 dimensions perpendicular to the (1, 1,  . . .) axis until each site, together 
with its d nearest neighbours with non-negative coordinates, forms a hypertetrahedron. 
If an extra site is placed at the centre of each hypertetrahedron so formed, the resulting 
structure is one in which each site has d + 1 nearest neighbours. Finally the nearest- 
neighbour bonds are all directed in the positive sense relative to the (1,  1 , .  . .) axis. 
The moments GI,,, on the left of (6) are calculated relative to an origin on the original 
cubic lattice. The pair-connectedness C,( p )  in (6) is for site-bond percolation on the 
hypercubic lattice and the sum is over sites on this lattice. 
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In the case m = 0, equation ( 6 )  leads to the simple relation 

which establishes equality of the critical probabilities for bond percolation on the 
hyperdiamond and site-bond percolation on the hypercubic lattices. The value of p c  
for bond percolation on the directed honeycomb lattice which may consequently be 
read from table 1 represents a slight upward revision of the value pc  = 0.8226 f 0.0002 
obtained by Ble,ase (1977) using the first forty-three terms of the mean size series. The 
increase results from the previously mentioned imposition of the value y = 2.269. Since 
v, and vo are normally determined from moment ratios the Pad6 tables corresponding 
to these exponents for bond percolation on the hyperdiamond lattices would (using 
(7)) be identical to those of the corresponding hypercubic problems. 

which is normally used to determine 
vIl involves three of the cubic moments, 

The expression for the second moment 

and the resulting series for the honeycomb and diamond lattices are given in the 
appendix. The moments po,o and po,, are less strongly divergent at pc than p0,2 but 
nevertheless a Pad6 analysis of bo,2/fio,o rather than p0,2/p0,0 gives a different set of 
data from which to estimate vII. It is found that the pole-residue pairs for the honeycomb 
and diamond bond problems lie on the same curves as for the corresponding site-bond 
problems so that the vll estimates in table 1 also apply to these problems. 

Equation ( 6 )  also determines the moments for site percolation on the hyperdiamond 
lattice (Essam and De'Bell 1982) but now C , ( p )  = C ? ( p 2 )  where C ? ( p )  is the pair- 
connectedness for site percolation on the hypercubic lattice. The required site percola- 
tion moment series on the square and simple cubic lattices are given in I and I1 
respectively with the exception of the first moment series which are given in the 
appendix. The resulting series for p0,2( p )  on the honeycomb and diamond lattices are 
also listed in the appendix. Conversion of our previous p c  results for site percolation 
on the square and simple cubic lattices gives 

p c ( ~ ,  site) = ~ ; " ( S Q ,  site) 

= 0.8399 0.0001 

and 

pc(Di, site) = ~ t . / ~ ( s c ,  site) 

= 0.659 * 0.003. 

Again ( 7 )  implies that the estimates of v, and vo based on p2,0/S and S / S o  will be 
the same as those for the square and simple cubic site problems given in I and 11. 
Analysis of the ~ ~ , ~ ( p )  series gives estimates of ull similar to those in I and 11. 

4. Concluding remarks 

It is generally believed that site and bond percolation are in the same universality class 
and that site-bond percolation will also belong to this class. This has been demonstrated 
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for undirected percolation by series (Agrawal et al) and position-space renormalisation 
group (Nakanishi and Reynolds 1979) methods. Our results for directed percolation 
are clearly consistent with this universality. It was hoped that the exponents for the 
above class would be more accurately determined by the much longer series for 
site-bond percolation. This turned out not to be the case although the evidence for 
the validity of the scaling relation (3 )  in two dimensions was much stronger than that 
found in I. The inconsistency in three dimensions remains but we still believe this to 
be due to the special nature of the So series referred to in 11. 

Appendix. Coefficients of p" in the low-density series 

Table A l .  The site-bond problem on the directed square lattice. 

0 
1 
2 

3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 
25 
26 

27 
28 
29 
30 
31 
32 
33 
34 

1 
0 
2 

0 
4 
0 
8 

- 1  
16 

-4 
32 

-14 
66 

I37 

294 
-280 

640 

- 40 

-109 

-706 
1429 

-1  737 
3 234 

-4 246 
7 448 

-10286 
17 334 

-24 872 
40 755 

-59 964 
96 531 

230 1 I6 
-349 177 

551 227 

-144713 

I 
0 
0 

0 
2 
0 
0 

- I  
6 
0 
0 

-6 
20 
-4 

5 
-33 

74 
-26 

40 

-168 
301 

-175 
286 

-852 
1356 

1808 
-1  074 

-4 370 
6 475 

-6 458 
10989 

-22 793 
33 040 

-38 399 
64 909 

0 
0 
2 

0 
8 
0 

24 
-2 
64 

-12 
160 

-54 
390 

- 192 
932 

-620 
2 230 

- I  844 
5 332 

-5 250 
12 864 

-14382 
31 208 

-38 544 
76 408 

-101 342 
188 192 

-263 410 
466 420 

1 160 942 
-1  734 724 

2 900 508 
-4416 598 

7 264 196 

-677 906 

0 
0 
1 

0 
4 
0 

12 
0 

32 
-2 
80 

-13 
193 

-56 
456 

-200 
1071 
-638 
2 506 

-1 893 
5 902 

-5356 
13 974 

-14626 
33 408 

80 492 
-38 997 

-102 103 
I95 606 

-263 986 
478 49 1 

-676 142 
1 I77 576 

- 1 720 494 
2 91 1 098 

0 
0 
1 

0 
8 
0 

36 
-2 
I28 

-18 
400 

-105 
1161 
-464 
3 208 

-1780 
8631 

-6 138 
22 802 

-19793 
59 798 

-60 502 
156 078 

-178 318 
407 376 

-510249 
I063 380 

- 1  429 587 
2 779 686 

-3 936 828 
7 271 631 

-10706946 
19 037 632 

-28 820 056 
49 846 302 
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Tuble A l .  (continued) 

n S So J2POJ fP2.0 P0.2 

35 
36 
37 
38 
39 
40 
41 
42 

43 
44 
45 
46 
47 
48 

-844 026 
1325 875 

-2 042 320 
3 200 362 

-4 952 069 
7 747 369 

-12 025 029 
18 803 789 

-29 257 829 
45 741 700 

-71 299 218 
11 1 502 853 

-174061 514 
272 304 224 

-121 918 
175 585 

-227 558 
380 442 

-665 233 
968 457 

- I  345 581 
2 216 501 

-3 709 379 
5 463 010 

-7 951 882 
12 944 433 

-21 027 246 
31 426 920 

- 1  1213 290 
18 232 196 

-28 398 442 
45 821 496 

-71 832 388 
1 I5 278 538 

-181 485294 
290 247 646 

-458 3 12 338 
731 205 898 

-1 156868020 
1842981826 

-2919904730 
4646879872 

-4357317 
7 223 650 

-10 999 602 
I7 974 782 

-27 706 907 
44 826 469 

-69 687 927 
11 1 975 445 

-175 126984 
280 085 839 

-439 867 603 
701 306 807 

- 1  104601 543 
I757501424 

-76 989 877 
I30 492 3 I O  

-204 370 932 
341 420 726 

-539 954 737 
892 602 561 

- 1  420862891 
2331392965 

-3 727 544 850 
6 083 098 175 

-9 753 207 325 
15 855 341 443 

41 282 335 480 
-25 466 801 915 

Table A2. The site-bond problem on the directed simple cubic lattice. 

Po.2 

0 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1 
0 
3 
0 
9 
0 

27 
-3 
81 

-18 
243 
-96 
74 1 

2 280 
-1  716 

7 160 
-6 627 
22 821 

-25 219 
74 220 

-93 I l l  
245 019 

-341 853 
822 708 

-414 

1 
0 
0 
0 
0 
0 
6 
0 
0 

-6 
0 

-9 
96 

0 
12 

-186 
2 

-297 
1992 

1098 
-6 378 

2817 
-12 366 

52 965 

-478 

0 
0 
3 
0 

18 
0 

81 
-6 

324 
-54 

1215 
-369 
4410 

- 1  980 
15 669 

-9 693 
55 287 

-43 401 
194415 

-186312 
686 070 

-766 329 
2 430 999 

-3 083 418 
8 677 386 

0 
0 
1 
0 
6 
0 

27 
-1 
108 

-12 
405 
-87 

1464 
-498 
5 169 

-2 508 
18 055 

- 1 1  548 
62 705 

-50 265 
218 006 

-209 396 
760 135 

-847 429 
2 667 024 

0 
0 
1 
0 

12 
0 

81 
-4 

432 
-54 

2 025 
-477 
8 784 

-3 180 
36 189 

-18453 
144 373 

-95 857 
563 477 

-465 816 
2 I72 044 

8 307 193 
-9 466 198 
31 678 578 

-2 139 209 
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Table A3. Low-density expansions for additional longitudinal moments. 

PLO*. I ( P 2 )  A . 2 (  P )  
Square Cubic Honeycomb Diamond 

n site site Bond Site Bond Site 

I 
2 
3 
4 
5 
6 
7 
8 
9 

I O  
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

2 
8 
22 
52 
112 
228 
442 
832 

I516 
2 720 
4 754 
8 264 
I4 000 
23 824 
39318 
66 052 
IO6 282 
I77 884 
277 936 
469 384 
703 924 

1 225 052 

3 
18 
75 
270 
882 

2 736 
8 085 
23 334 
65 184 
180 186 
485 202 

4 
18 
50 

144 
256 
648 
932 

2 240 
2 812 
6 716 
7 358 
18 304 
I7 490 
46 928 
37 436 

115 442 
72 810 
276 704 
120 706 
654 266 
147412 

I 540 836 
-12888 

3 643 532 
-905 026 
8 699 I I O  

-4 264 086 
21 041 374 

- 1 5  068 496 
51 651 726 

-47 518 242 
I28 556 808 

-140 357 072 
324 076 544 
-399 201 890 
825 I O 8  210 

- 1  IO5 725 344 
2 117945708 

-3 010952 798 
5465863900 

-8 094 354 008 
14 I63 617 688 

-21 572 547 022 
36 783 180 478 

-57 IO4 527 124 
95670801012 

- I50 444 495 172 
248944501354 

4 
18 
50 
144 
256 
612 
904 
1980 
2 652 
5 472 
6 896 
13 680 
I6 548 
31 734 
37 250 
69 804 
80 128 
146718 
165 442 
298 548 
332 028 
588 402 
646 738 

1 136016 
I 237 204 
2 138 400 
2 309 436 
3 975 984 
4 266 640 
7 225 380 
7 704 188 
13 067 388 
13871 140 
23 070 204 
24361 312 
40 898 736 
43 059 248 
70 362 702 
73 732 250 
123 I63 056 
I28 856 528 
206 444 502 
214962978 
359 875 872 
374 123 540 

9 
48 
147 
576 
1089 
3 888 
5 883 
20 373 
26 649 
93 150 
IO5 651 
389 016 
381 501 

1 533 186 
1 247 904 
5 796 084 
3 720 096 
21 344 493 
9 559 131 
77 200 485 
18 709 740 
276 833 337 
4 916 907 

989 1 1 5  531 

9 
48 
147 
576 
1089 
3 696 
5 712 

18 144 
25 191 
76 032 
98 63 I 
288 864 
358 146 

I 019 088 
1 222 020 
3 419 808 
4001 910 

I O  976 832 
12 594 546 
34 210 560 
38 666 028 
IO3 373 568 
115330 185 
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