

Home Search Collections Journals About Contact us My IOPscience

Series expansion analysis of directed site-bond percolation on the square and simple cubic lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1985 J. Phys. A: Math. Gen. 18 355 (http://iopscience.iop.org/0305-4470/18/2/025) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 31/05/2010 at 09:20

Please note that terms and conditions apply.

Series expansion analysis of directed site-bond percolation on the square and simple cubic lattices

K De'Bell⁺ and J W Essam[‡]

 Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5
 Mathematics Department, Westfield College, University of London, Hampstead NW3 7ST, England

Received 10 August 1984

Abstract. Analysis of low-density series for site-bond percolation on the directed square (SQ) and simple cubic (SC) lattice (and related series for bond percolation on the honeycomb (H) and diamond (Di) lattices) is found to be consistent with

 $p_{\rm c}({\rm sq, site-bond}) = p_{\rm c}({\rm H, bond}) = 0.8228 \pm 0.0002$

 $p_{\rm c}(\rm sc, site-bond) = p_{\rm c}(\rm Di, bond) = 0.637 \pm 0.002$

and previous estimates of γ , ν_{\uparrow} and ν_{\perp} . Analysis of the square lattice series supports the validity of the scaling relation

 $\gamma_0 = \gamma - (d-1)\nu_{\perp}$

for the two-dimensional lattices.

Site percolation on the honeycomb and diamond lattices is also considered.

1. Introduction

The statistical properties of the directed percolation problem, in which bonds (and/or sites) of a lattice are occupied with probability p and fluid flow is restricted so that it always has a positive component along some chosen axis (the preferred direction), may be determined from a knowledge of the pair-connectedness $C_i(p)$, the probability that site *i* is connected to the origin. The moments of the pair-connectedness are given by

$$\mu_{l,m}(p) = \sum x_i^l t_i^m C_i(p), \qquad (1)$$

where x_i and t_i are the components of the position vector of site *i* perpendicular to and parallel to the preferred direction of fluid flow respectively. The moment $\mu_{00}(p)$ is the mean size S(p) of the cluster connected to the origin. For *p* sufficiently close to its critical value p_c the moments are assumed to have the asymptotic form

$$\mu_{l,m}(p) \sim |p_{c} - p|^{-\gamma - l\nu_{c} - m\nu_{l}}$$
⁽²⁾

(Cardy and Sugar 1980, Kinzel and Yeomans 1981). Moreover the scaling form for the pair-connectedness proposed by Cardy and Sugar (1980) leads to the scaling prediction

$$\gamma_0 = \gamma - (d-1)\nu_\perp \tag{3}$$

0305-4470/85/020355+09\$02.25 © 1985 The Institute of Physics 355

where γ_0 is the critical exponent of the diagonal mean size

$$S_0(p) = \sum_{i:x_i=0} C_i(p)$$
(4)

and d is the lattice dimension.

In this paper we extend our previous work on two- and three-dimensional directed percolation (De'Bell and Essam 1983a, b, hereafter referred to as I and II) to site-bond percolation on the directed square and simple cubic lattices (§ 2). Previous series expansion work on site-bond percolation has been for undirected lattices (Agrawal *et al* 1979, Brown *et al* 1975). In site-bond percolation both sites and bonds are independently present with probability p, which means that the same configurational data gives rise to series which are twice as long as those for the corresponding site and bond problems. We have used these series to test relation (3) by comparing estimates of ν_{\perp} and ν_{0} , defined by

$$\nu_0 = (\gamma - \gamma_0) / (d - 1), \tag{5}$$

which should be equal if (3) is true. The results of previous tests (given in I and II) showed significant differences between ν_0 and ν_{\perp} which were relatively small in two dimensions but quite pronounced in three dimensions. The latter was attributed to the special nature of the $S_0(p)$ series which has a length which is effectively much shorter than that of the other moments. This effect is much worse in three dimensions where the number of available coefficients is in any case rather small. We shall find that the data for directed site-bond percolation strongly supports equation (3) in two dimensions but that the discrepancy remains in three dimensions.

In § 3 we consider series expansions for directed bond and site percolation on the honeycomb and diamond lattices. The bond percolation series may be derived from the site-bond series above whereas the site problem series are determined by previously published (I and II) site problem series for the square and simple cubic lattices (Essam and De'Bell 1982).

Our results are summarised in table 1 and are based on Padé approximant analysis of the series expansions tabulated in the appendix. The coefficients in these expansions were obtained by the methods described in I.

	Square lattice	Simple cubic lattice	lattice	
p _c	$0.82281 \pm 0.01\Delta\gamma \pm 0.00002$	0.637 ± 0.002		
γ	2.269 (assumed)	$1.575 \pm 44\Delta p_c \pm 0.003$		
$ u_{\parallel}$	$1.731 + 70\Delta p_c \pm 0.004$	$1.260 + 19\Delta p_c \pm 0.003$		
$\nu_{\perp}^{"}$	$1.100 + 51\Delta p_c \pm 0.005$	$0.728 + 14\Delta p_c \pm 0.002$		
ν_0	$1.097 + 36\Delta p_c \pm 0.001$	$0.638 + 12\Delta p_c \pm 0.004$		

Table 1. Summary of critical probabilities and exponents for site-bond percolation. The coefficients of Δp_c are obtained from the tangent to the pole-residue curve at the estimated value p_c and measure the sensitivity of the exponent values to changes in this estimate.

2. Analysis of directed site-bond percolation series

As usual (Gaunt and Guttman 1974) we form a selection of Padé approximants to the logarithmic derivative (Dlog) of various series in order to estimate p_c and the exponents γ , ν_{\parallel} , ν_{\perp} and ν_0 .

The pole-residue data for the square lattice Dlog S(p) series is given in table 2. Our estimate of p_c (table 1) derived from this data is biased slightly upwards to give $\gamma = 2.269$ and is in agreement with that obtained by Kinzel and Yeomans (1981) using finite size scaling techniques. This value of γ was obtained from the square lattice bond problem series which showed the best convergence of the series examined in I. The term $0.01\Delta\gamma$ (table 1) shows the sensitivity of p_c to changes in the assumed value of γ and the error in the value of p_c quoted in the abstract is obtained by taking $|\Delta\gamma| \le 0.02$ as in I. Similar pole-residue data from $\mu_{2,0}/S$ ($\sim (p_c - p)^{-2\nu_{\perp}}$) and S/S_0 ($\sim (p_c - p)^{\gamma_0 - \gamma}$) which has been scaled to give estimates of ν_{\perp} and ν_0 respectively are shown in figure 1. The points lie on two distinct curves which cross in the vicinity of the estimated p_c in excellent agreement with the scaling prediction $\nu_0 = \nu_{\perp}$ which is equivalent to (3) by definition of ν_0 . This relation has also recently been confirmed by Monte Carlo data for directed site percolation on the square lattice (De'Bell *et al* 1984).

	(N/N	(N/N-2) $(N/N$		(-1)	(N/N)		(N/N+1)		(N/N+2)	
N	<i>p</i> _c	γ	Pc	γ	p _c	γ	p _c	γ	pc	γ
21 22	0.8225		0.8225	2.241	0.8225	2.239	0.8228 0.8229 ^D	2.272	0.8228	2.263
23 24	0.8213 ^D 0.8228	2.248 2.267	0.8226 0.8223 ^D	2.246 2.228	0.8227	2.254	0.8227	2.262		_

 Table 2. Poles and residues of the Dlog Padé approximants from the mean size series for site-bond percolation on the square lattice.

^D These approximants have an interfering defect and should be ignored when estimating p_c or γ .

Figure 1. Estimates of ν_0 and ν_{\perp} for site-bond percolation on the square lattice: (\bullet) pole-residue plot for $Dlog(S/S_0)$; (+) the four points which are closest to p_c from the pole-residue plot for $\frac{1}{2}[Dlog(\mu_{2,0}/S)]$.

In the analysis of three-dimensional bond and site percolation presented in II no particular series was chosen as giving the best estimate of γ and the value of p_c for site-bond percolation on the simple cubic lattice given in table 1 is unbiased. The result quoted is based on the data in table 3 which includes pole-residue pairs from

Table 3. Poles and residues of the Dlog Padé approximants for site-bond percolation on the simple cubic lattice.

(a) Mean size S.

(N/N-2)		(N/N)	(N/N-1)		(N/N)		+1)	(N/N+2)	
<i>p</i> _c	γ	$p_{\rm c}$	γ	Pc	γ	p _c	γ	<i>p</i> _c	γ
		0.6398 ^D	1.669	0.6383	1.618	0.6364 ^D	1.542	0.6208	0.777
0.6399 ^D	1.670	0.6416 ^D	1.711	0.6096	3.894	0.6339	1.437	0.6383	1.624
0.6379	1.613	0.6392	1.653	0.6375	1.594	0.6369	1.570	—	
0.6385	1.630	0.6363	1.538						
(IN)/IN	- 2)	$(\mathbf{N} / \mathbf{N})$	(-1)	(\mathbf{N})	N)	$(1\mathbf{v} / 1\mathbf{v})$	T 1)	(\mathbf{N})	2
<i>p</i> _c	20		$2\nu_{1}$	<i>p</i> _c	$2\nu_{\parallel}$	<i>p</i> _c	$2\nu_{\parallel}$	<i>P</i> _c	$2\nu_{. }$
_				0.6375	2.539	0.6373	2.532	0.6376	2.545
		0.6380	2.555	0.6377	2.544	0.6374	2.536	0.6372	2.529
0.6367	2.507	0.6382	2.562	0.6372	2.529	0.6377 ^D	2.544	0. 642 0 ^D	2.54
0.6423 ^D	2.676	0.6364	2.502	0.6413 ^D	2.55	0.6367	2.519	_	
	$(N/N) = \frac{(N/N)}{P_c}$ $(N/N) = \frac{1}{0.6399}$ $(N/N) = \frac{1}{0.6367}$ $(N/N) = \frac{1}{0.6367}$ (0.6423)	$(N/N-2)$ $p_{c} \qquad \gamma$ $$	(N/N-2) (N/N) = 0 (N/N)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

^D Interfering defect.

both the mean size series and the series for $\mu_{0,2}/S$. There appear to be no earlier estimates of the critical probability for this problem. The estimates of ν_{\perp} and ν_0 (table 1) are in good agreement with those reported in II and the apparent inconsistency with (3) is discussed therein. It can be seen that the error in the three-dimensional exponent estimates is dominated by the relatively large uncertainty in p_c which is ten times greater than in two dimensions.

3. The honeycomb and diamond lattices

It has been shown (Essam and De'Bell 1982) that the moments for site-bond percolation on the directed square and cubic lattice determine the moments $\hat{\mu}_{l,m}$ for bond percolation on the directed honeycomb and diamond lattices using the relation

$$\hat{\mu}_{l,m}(p) = \sum_{i} \left[d(d+1)x_{i}^{2} \right]^{l/2} d^{m/2} C_{i}(p) \{ \left[(d+1)t_{i} \right]^{m} + p \left[(d+1)t_{i} + d^{1/2} \right]^{m} \}$$
(6)

with d = 2 and 3. The result also holds for a general directed 'hyperdiamond' lattice defined as follows. Consider a d-dimensional cubic lattice and contract it uniformly in the d-1 dimensions perpendicular to the (1, 1, ...) axis until each site, together with its d nearest neighbours with non-negative coordinates, forms a hypertetrahedron. If an extra site is placed at the centre of each hypertetrahedron so formed, the resulting structure is one in which each site has d+1 nearest neighbours. Finally the nearestneighbour bonds are all directed in the positive sense relative to the (1, 1, ...) axis. The moments $\hat{\mu}_{l,m}$ on the left of (6) are calculated relative to an origin on the original cubic lattice. The pair-connectedness $C_i(p)$ in (6) is for site-bond percolation on the hypercubic lattice and the sum is over sites on this lattice. In the case m = 0, equation (6) leads to the simple relation

$$\hat{\mu}_{l,0}(p) = \left[d(d+1)\right]^{l/2} (1+p) \mu_{l,0}(p) \tag{7}$$

which establishes equality of the critical probabilities for bond percolation on the hyperdiamond and site-bond percolation on the hypercubic lattices. The value of p_c for bond percolation on the directed honeycomb lattice which may consequently be read from table 1 represents a slight upward revision of the value $p_c = 0.8226 \pm 0.0002$ obtained by Blease (1977) using the first forty-three terms of the mean size series. The increase results from the previously mentioned imposition of the value $\gamma = 2.269$. Since ν_{\perp} and ν_0 are normally determined from moment ratios the Padé tables corresponding to these exponents for bond percolation on the hyperdiamond lattices would (using (7)) be identical to those of the corresponding hypercubic problems.

The expression for the second moment $\hat{\mu}_{0,2}$ which is normally used to determine ν_{\parallel} involves three of the cubic moments,

$$\hat{\mu}_{0,2}(p) = d(d+1)^2(1+p)\mu_{0,2}(p) + dp[2(d+1)d^{1/2}\mu_{0,1}(p) + d\mu_{0,0}(p)]$$
(8)

and the resulting series for the honeycomb and diamond lattices are given in the appendix. The moments $\mu_{0,0}$ and $\mu_{0,1}$ are less strongly divergent at p_c than $\mu_{0,2}$ but nevertheless a Padé analysis of $\hat{\mu}_{0,2}/\hat{\mu}_{0,0}$ rather than $\mu_{0,2}/\mu_{0,0}$ gives a different set of data from which to estimate ν_{\parallel} . It is found that the pole-residue pairs for the honeycomb and diamond bond problems lie on the same curves as for the corresponding site-bond problems so that the ν_{\parallel} estimates in table 1 also apply to these problems.

Equation (6) also determines the moments for site percolation on the hyperdiamond lattice (Essam and De'Bell 1982) but now $C_i(p) = C_i^*(p^2)$ where $C_i^*(p)$ is the pairconnectedness for site percolation on the hypercubic lattice. The required site percolation moment series on the square and simple cubic lattices are given in I and II respectively with the exception of the first moment series which are given in the appendix. The resulting series for $\mu_{0,2}(p)$ on the honeycomb and diamond lattices are also listed in the appendix. Conversion of our previous p_c results for site percolation on the square and simple cubic lattices gives

$$p_{\rm c}({\rm H, site}) = p_{\rm c}^{1/2}({\rm sQ, site})$$

= 0.8399 • 0.0001

and

$$p_{\rm c}({\rm Di,\,site}) = p_{\rm c}^{1/2}({\rm sc,\,site})$$

= 0.659 ± 0.003

Again (7) implies that the estimates of ν_{\perp} and ν_0 based on $\mu_{2,0}/S$ and S/S_0 will be the same as those for the square and simple cubic site problems given in I and II. Analysis of the $\mu_{0,2}(p)$ series gives estimates of ν_{\parallel} similar to those in I and II.

4. Concluding remarks

It is generally believed that site and bond percolation are in the same universality class and that site-bond percolation will also belong to this class. This has been demonstrated for undirected percolation by series (Agrawal *et al*) and position-space renormalisation group (Nakanishi and Reynolds 1979) methods. Our results for directed percolation are clearly consistent with this universality. It was hoped that the exponents for the above class would be more accurately determined by the much longer series for site-bond percolation. This turned out not to be the case although the evidence for the validity of the scaling relation (3) in two dimensions was much stronger than that found in I. The inconsistency in three dimensions remains but we still believe this to be due to the special nature of the S_0 series referred to in II.

Appendix. Coefficients of p^n in the low-density series

n	S	So	$\sqrt{2}\mu_{0,1}$	$\frac{1}{2}\mu_{2,0}$	$\mu_{0,2}$
0	1	1	0	0	0
1	0	0	0	0	0
2	2	0	2	1	1
3	0	0	0	0	0
4	4	2	8	4	8
5	0	0	0	0	0
6	8	0	24	12	36
7	-1	-1	-2	0	-2
8	16	6	64	32	128
9	-4	0	-12	-2	-18
10	32	0	160	80	400
11	-14	-6	-54	-13	-105
12	66	20	390	193	1 161
13	-40	-4	-192	-56	-464
14	137	5	932	456	3 208
15	-109	-33	-620	-200	-1780
16	294	74	2 230	1 071	8 631
17	-280	-26	-1 844	-638	-6 138
18	640	40	5 332	2 506	22 802
19	-706	-168	-5 250	-1 893	-19 793
20	1 429	301	12 864	5 902	59 798
21	-1737	-175	-14 382	-5356	-60 502
22	3 234	286	31 208	13 974	156 078
23	-4 246	-852	-38 544	-14 626	-178 318
24	7 448	1 356	76 408	33 408	407 376
25	-10 286	-1074	-101 342	-38 997	-510 249
26	17 334	1 808	188 192	80 492	1 063 380
27	-24 872	-4 370	-263 410	-102 103	-1 429 587
28	40 755	6 475	466 420	195 606	2 779 686
29	-59 964	-6 458	-677 906	-263 986	-3 936 828
30	96 531	10 989	1 160 942	478 491	7 271 631
31	-144 713	-22 793	-1 734 724	-676 142	-10 706 946
32	230 116	33 040	2 900 508	1 177 576	19 037 632
33	-349 177	-38 399	-4 416 598	-1 720 494	-28 820 056
34	551 227	64 909	7 264 796	2 911 098	49 846 302

Table A1. The site-bond problem on the directed square lattice.

$\mu_{0,2}$	$\frac{1}{2}\mu_{2,0}$	$\sqrt{2}\mu_{0,1}$	S ₀	S	n
-76 989 877	-4 357 317	-11 213 290	-121 918	-844 026	35
130 492 310	7 223 650	18 232 196	175 585	1 325 875	36
-204 370 932	-10 999 602	-28 398 442	-227 558	-2 042 320	37
341 420 726	17 974 782	45 821 496	380 442	3 200 362	38
-539 954 737	-27 706 907	-71 832 388	-665 233	-4 952 069	39
892 602 561	44 826 469	115 278 538	968 457	7 747 369	40
-1 420 862 891	-69 687 927	-181 485 294	-1 345 581	-12 025 029	41
2 331 392 965	111 975 445	290 247 646	2 216 501	18 803 789	42
-3 727 544 850	-175 126 984	-458 312 338	-3 709 379	-29 257 829	43
6 083 098 175	280 085 839	731 205 898	5 463 010	45 741 700	44
-9 753 207 325	-439 867 603	-1 156 868 020	-7 951 882	-71 299 218	45
15 855 341 443	701 306 807	1 842 981 826	12 944 433	111 502 853	46
-25 466 801 915	-1 104 601 543	-2 919 904 730	-21 027 246	-174 061 514	47
41 282 335 480	1 757 501 424	4 646 879 872	31 426 920	272 304 224	48

Table A1. (continued)

Table A2. The site-bond problem on the directed simple cubic lattice.

n	S	S ₀	$\sqrt{3}\mu_{0,1}$	$\frac{1}{2}\mu_{2,0}$	$\mu_{0,2}$
0	1	1	0	0	0
1	0	0	0	0	0
2	3	0	3	1	1
3	0	0	0	0	0
4	9	0	18	6	12
5	0	0	0	0	0
6	27	6	81	27	81
7	-3	0	-6	-1	-4
8	81	0	324	108	432
9	-18	-6	-54	-12	-54
10	243	0	1 215	405	2 0 2 5
11	-96	-9	-369	-87	-477
12	741	96	4 4 1 0	1 464	8 784
13	-414	0	-1 980	-498	-3 180
14	2 280	12	15 669	5 169	36 189
15	-1716	-186	-9 693	-2 508	-18 453
16	7 160	2	55 287	18 055	144 373
17	-6 627	-297	-43 401	-11 548	-95 857
18	22 827	1 992	194 415	62 705	563 477
19	-25 219	-478	-186 312	-50 265	-465 816
20	74 220	1 098	686 070	218 006	2 172 044
21	-93 111	-6 378	-766 329	-209 396	-2 139 209
22	245 019	2 817	2 430 999	760 135	8 307 193
23	-341 853	-12 366	-3 083 418	-847 429	-9 466 198
24	822 708	52 965	8 677 386	2 667 024	31 678 578
And the second sec					

Table A3.	Low-density	expansions	for	additional	longitudinal	moments.
					<u> </u>	

SquareCubicHoneycombDiamondnsitesiteBondSiteBond123449281818184832275505014745227014414457651128822562561089622827366486123 88874428 0859329045 883883223 3342 2401 98020 37391 51665 1842 8122 65226 649102 720180 1866 7165 47293 150114 7544 85 2027 3586 896105 651128 26418 30413 680389 0161314 00017 49016 548381 5011423 82446 92831 7341 533 1861	Site 9 48 147 576 1 089 3 696 5 712 18 144 25 191 76 032 20 632
nsitesiteBondSiteBond123449281818184832275505014745227014414457651128822562561089622827366486123 888744280859329045 883883223 3342 2401 98020 37391 51665 1842 8122 65226 649102 720180 1866 7165 47293 150114 754485 2027 3586 896105 651128 26418 30413 680389 0161314 00017 49016 548381 5011423 82446 92831 7341 533 1861	Site 9 48 147 576 1089 3696 5712 18 144 25 191 76 032
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 48 147 576 1 089 3 696 5 712 18 144 25 191 76 032
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48 147 576 1 089 3 696 5 712 18 144 25 191 76 032
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	147 576 1 089 3 696 5 712 18 144 25 191 76 032
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	576 1 089 3 696 5 712 18 144 25 191 76 032
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 089 3 696 5 712 18 144 25 191 76 032
6 228 2736 648 612 3888 7 442 8085 932 904 5883 8 832 23334 2240 1980 20373 9 1516 65184 2812 2652 26649 10 2720 180186 6716 5472 93150 11 4754 485202 7358 6896 105651 12 8264 18304 13680 389016 13 14000 17490 16548 381501 14 23824 46928 31734 1533186 1	3 696 5 712 18 144 25 191 76 032
7 442 8 085 932 904 5 883 8 832 23 334 2 240 1 980 20 373 9 1 516 65 184 2 812 2 652 26 649 10 2 720 180 186 6 716 5 472 93 150 11 4 754 485 202 7 358 6 896 105 651 12 8 264 18 304 13 680 389 016 13 14 000 17 490 16 548 381 501 14 23 824 46 928 31 734 1 533 186 1	5 712 18 144 25 191 76 032
8 832 23 334 2 240 1 980 20 373 9 1 516 65 184 2 812 2 652 26 649 10 2 720 180 186 6 716 5 472 93 150 11 4 754 485 202 7 358 6 896 105 651 12 8 264 18 304 13 680 389 016 13 14 000 17 490 16 548 381 501 14 23 824 46 928 31 734 1 533 186 1	18 144 25 191 76 032
9 1 516 65 184 2 812 2 652 26 649 10 2 720 180 186 6 716 5 472 93 150 11 4 754 485 202 7 358 6 896 105 651 12 8 264 18 304 13 680 389 016 13 14 000 17 490 16 548 381 501 14 23 824 46 928 31 734 1 533 186 1	25 191 76 032
10 2 720 180 186 6 716 5 472 93 150 11 4 754 485 202 7 358 6 896 105 651 12 8 264 18 304 13 680 389 016 13 14 000 17 490 16 548 381 501 14 23 824 46 928 31 734 1 533 186 1	76 032
11 4 754 485 202 7 358 6 896 105 651 12 8 264 18 304 13 680 389 016 13 14 000 17 490 16 548 381 501 14 23 824 46 928 31 734 1 533 186 1	00 (01
12 8 264 18 304 13 680 389 016 13 14 000 17 490 16 548 381 501 14 23 824 46 928 31 734 1 533 186 1	98 631
13 14 000 17 490 16 548 381 501 14 23 824 46 928 31 734 1 533 186 1	288 864
14 23 824 46 928 31 734 1 533 186 1	358 146
	019 088
15 39 318 37 436 37 250 1 247 904 1	222 020
16 66 052 115 442 69 804 5 796 084 3	419 808
17 106 282 72 810 80 128 3 720 096 4	001 910
18 177 884 276 704 146 718 21 344 493 10	976 832
19 277 936 120 706 165 442 9 559 131 12	594 546
20 469 384 654 266 298 548 77 200 485 34	210 560
21 703 924 147 412 332 028 18 709 740 38	666 028
22 1 225 052 1 540 836 588 402 276 833 337 103	373 568
23 -12 888 646 738 4 916 907 115	330 185
24 3 643 532 1 136 016 989 115 531	
25 -905 026 1 237 204	
26 8 699 110 2 138 400	
27 -4 264 086 2 309 436	
28 21 041 374 3 975 984	
29 -15 068 496 4 266 640	
30 51 651 726 7 225 380	
31 -47 518 242 7 704 188	
32 128 556 808 13 067 388	
33 -140 357 072 13 871 140	
34 324 076 544 23 070 204	
35 -399 201 890 24 361 312	
36 825 108 210 40 898 736	
37 -1 105 725 344 43 059 248	
38 2 117 945 708 70 362 702	
39 -3 010 952 798 73 732 250	
40 5 465 863 900 123 163 056	
41 -8 094 354 008 128 856 528	
42 14 163 617 688 206 444 502	
43 -21 572 547 022 214 962 978	
44 36 783 180 478 359 875 872	
45 -57 104 527 124 374 723 540	
46 95 670 801 012	
47 -150 444 495 172	
48 248 944 501 354	

References

Agrawal P, Redner S, Reynolds P J and Stanley H E 1979 J. Phys. A: Math. Gen. 12 2073-85
Blease J 1977 J. Phys. C: Solid State Phys. 10 3461-76.
Brown E, Essam J W and Place C M 1975 J. Phys. C: Solid State Phys. 8 321-35
Cardy J L and Sugar R L 1980 J. Phys. A: Math. Gen. 13 L423-7
De'Bell K and Essam J W 1983a J. Phys. A: Math. Gen. 16 385-403
— 1983b J. Phys. A: Math. Gen. 16 3553-60
De'Bell K, Lookman T and Hunter D L 1984 Phys. Lett. 101A 221-3
Essam J W and De'Bell K 1982 J. Phys. A: Math. Gen. 15 L601-604
Gaunt D S and Guttman A J 1974 Phase Transitions and Critical Phenomena ed C Domb and M S Green, vol 3, 202-19
Kinzel W and Yeomans J M 1981 J. Phys. A: Math. Gen. 14 L163-8
Nakanishi H and Reynolds P J 1979 Phys. Lett. 71A 252-4